

Financing & Insuring Green Hydrogen Risks and the Role of Risk Transfer

December 2023 Patrick Hinze | Emerging Green Tech Solutions | Munich Re

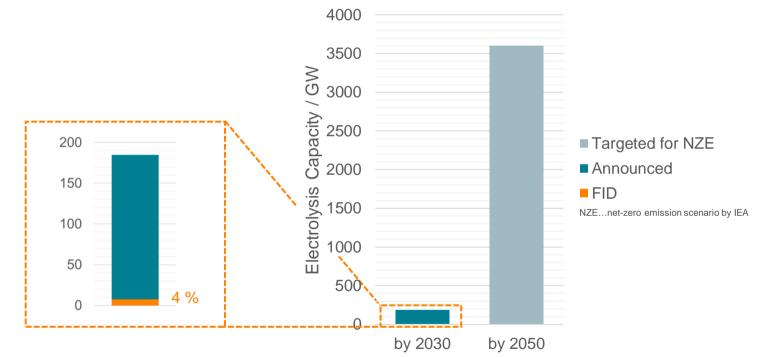
Munich Re Green Tech Solutions

For OEMs, Projects & Investors

in

~ 80 countries.

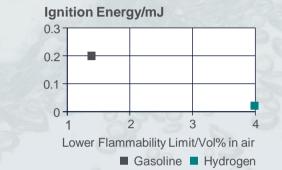
Uncertain and unproven technologies contribute to hesitance when it comes to investments



3

Munich RE 薹

Green Hydrogen Scale in a Net Zero Emission Scenario



Data Source: [IEA, Global Hydrogen Review, 2023], recalculated from a 2030 annual hydrogen production of 27Mt via electrolysis assuming 7000h/a and average operating hours and 48kWh/kg, early stage announcements included

Hydrogen's properties differ vastly from carbon-based fuels

New opportunities, new challenges, new risks

Flammability

A relatively high hydrogen concentration, but low ignition energy is needed for hydrogen to burn

 \rightarrow hot, high and fast burning flame, which is invisible in daylight

 $\left(\right)$

Volatility

 H_2 is the lightest molecule; 1L of gaseous hydrogen at standard conditions ~ 0.09 g \rightarrow rises rapidly in air

Diffusivity

Hydrogen can diffuse physically and chemically

 \rightarrow escapes fast and can even pass through most materials incl. metals

 \rightarrow can cause brittleness in most solids

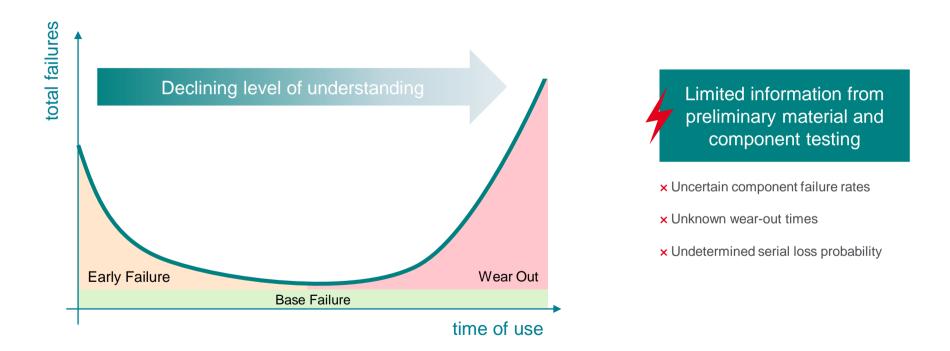
Examples of technical risks along the GH₂ value chain associated with hydrogen as a "new" energy carrier

	Electrolysis	Compression	GH ₂ Storage	Transfer / Fueling	Utilisation	
	Hydrogen and oxygen are in close proximity within the stack → cross-over could yield explosive gas mixtures	Fast physical hydrogen diffusion and high volatility pose a challenge to the design of leak-tight systems	Chemical hydrogen diffusion can cause em- brittlement of materials used in pressure tanks	Undetected hydrogen leaks could lead to flammable mixtures, which are then easily igniteable	Hydrogen flames are hot-burning and invisible to humans in daylight.	
Risk of	Explosion	Release	Tank burst	Fire	Severe injury	9

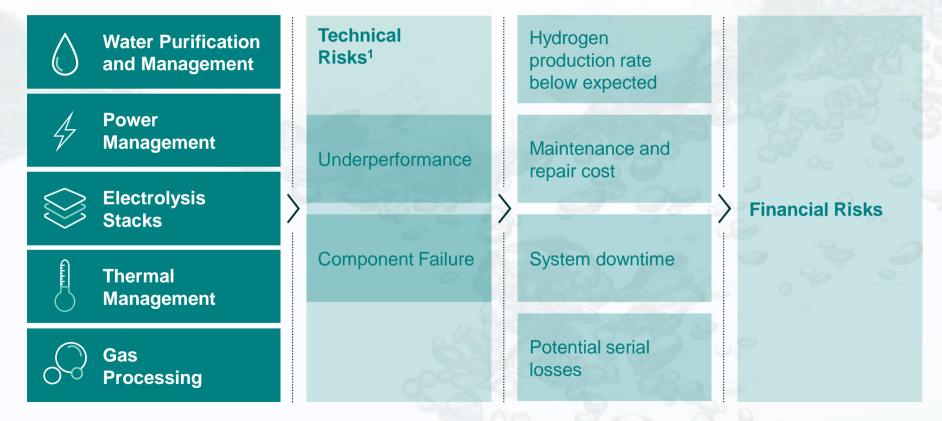

GH₂...gaseous hydrogen

Business Case: "To Have and Have Not" (1/2)

Spotlight on Performance and Durability Risks


- Limited technological maturity
 - considerable uncertainties in scaling, performance and durability aspects
 - impairs bankability of hydrogen projects
- Complex, non-linear aging behavior
 - multi-component systems
 - interrelated and often mutually reinforcing degradation mechanisms
 - influenced by multible factors (ambient conditions, use case, materials, feed purity etc.)

Business Case: "To Have and Have Not" (2/2)



Spotlight on Component Failure

Summary of technical risks in an electrolyzer plant and their impact

The Role of Risk Transfer: **Product and Performance Warranty Backstop**

Protecting the balance sheet against unexpected, excessive warranty claims

System provider

Increasing financial predictability and freeing up trapped capital

Kev **benefits**

Supporting sales and marketing through warranty partner label by Munich Re

Providing an insolvencyprotection for hydrogen systems against excessive repair costs

> Enhancing the bankability by increased cash-flow certainty and decreased long-term technology risk

> > Improving the financing terms

System owner

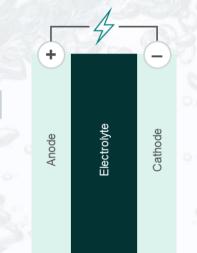
Join the hydrogen adventure and stay in touch

Thank you! Questions?

Patrick Hinze

Head of Emerging Green Technologies phinze@munichre.com

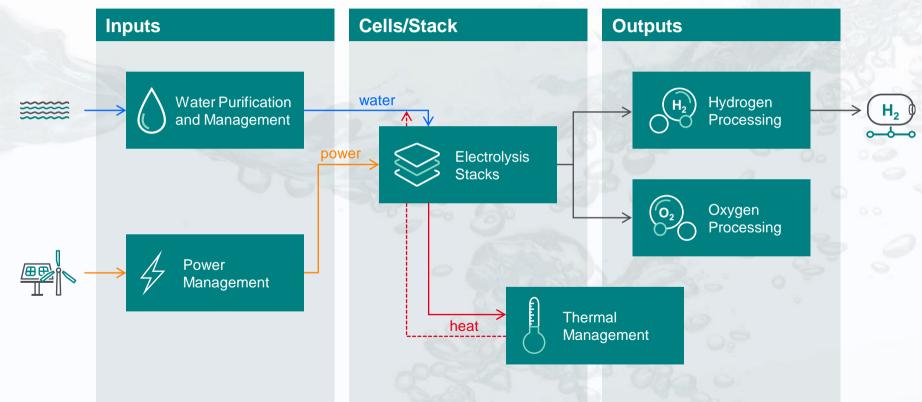
Green Hydrogen as an Energy Carrier: Motivation & Challenges



Large decarbonization potential

- Produced from renewables
- Intrinsically carbon-free
- Relatively versatile:
 - -Direct use
 - -Upgrading to other products
 - -Re-electrification (mobile/stationery)
 - -Longterm storage

Hurdles to overcome


- Drastic scale up of production capacity would be required
- Limited familiarity with technologies and risks involved

Simplified flow chart of an electrolysis plant

(only major streams from/to the electrolysis stacks are shown; the grey boxes indicate the system boundaries as considered herein)

